Fast and Automatic Ultrasound Simulation from CT Images
نویسندگان
چکیده
Ultrasound is currently widely used in clinical diagnosis because of its fast and safe imaging principles. As the anatomical structures present in an ultrasound image are not as clear as CT or MRI. Physicians usually need advance clinical knowledge and experience to distinguish diseased tissues. Fast simulation of ultrasound provides a cost-effective way for the training and correlation of ultrasound and the anatomic structures. In this paper, a novel method is proposed for fast simulation of ultrasound from a CT image. A multiscale method is developed to enhance tubular structures so as to simulate the blood flow. The acoustic response of common tissues is generated by weighted integration of adjacent regions on the ultrasound propagation path in the CT image, from which parameters, including attenuation, reflection, scattering, and noise, are estimated simultaneously. The thin-plate spline interpolation method is employed to transform the simulation image between polar and rectangular coordinate systems. The Kaiser window function is utilized to produce integration and radial blurring effects of multiple transducer elements. Experimental results show that the developed method is very fast and effective, allowing realistic ultrasound to be fast generated. Given that the developed method is fully automatic, it can be utilized for ultrasound guided navigation in clinical practice and for training purpose.
منابع مشابه
Automatic classification of Non-alcoholic fatty liver using texture features from ultrasound images
Background: Accurate and early detection of non-alcoholic fatty liver, which is a major cause of chronic diseases is very important and is vital to prevent the complications associated with this disease. Ultrasound of the liver is the most common and widely performed method of diagnosing fatty liver. However, due to the low quality of ultrasound images, the need for an automatic and intelligent...
متن کاملVisualization and GPU-accelerated simulation of medical ultrasound from CT images
We present a fast GPU-based method for simulation of ultrasound images from volumetric CT scans and their visualization. The method uses a ray-based model of the ultrasound to generate view-dependent ultrasonic effects such as occlusions, large-scale reflections and attenuation combined with speckle patterns derived from pre-processing the CT image using a wave-based model of ultrasound propaga...
متن کاملAutomatic measurement of instantaneous changes in the walls of carotid artery with sequential ultrasound images
Introduction: This study presents a computerized analyzing method for detection of instantaneous changes of far and near walls of the common carotid artery in sequential ultrasound images by applying the maximum gradient algorithm. Maximum gradient was modified and some characteristics were added from the dynamic programming algorithm for our applications. Methods: The algorithm was evaluat...
متن کاملFast simulation of ultrasound images from a CT volume
The goal of our work is to propose a fast ultrasound image simulation from CT volumes. This method is based on a model elaborated by Bamber and Dickinson that predict the appearance and properties of a B-Scan ultrasound image from the distribution of point scatterers. We propose to extend this model for the standard medical ultrasound image simulation by taking into account the acoustical tissu...
متن کاملAutomatic Classification of Benign And Malignant Liver Tumors In Ultrasound Images
Introduction: Differentiation of benign and malignant liver tumors is very important for finding appropriate treatment procedure. Human eyes sometime are not able to diagnose the type of liver tumor. Texture analysis is considered as a suitable method to increase the diagnostic power of medical images. In this study texture analysis is employed in order to classification of ben...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 2013 شماره
صفحات -
تاریخ انتشار 2013